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.2.0\

- An abstract approximatio.n framework for the identification of
nonlinear distributed parameter systems is developed. Inverse problems for
nonlinear systems governed by strongly maximal monotone operators
(satisfying a mild continuous dependence condition with respect to the
unknown parameters to be identified) are treated. Convergence of
Galerkin approximations and the corresponding solutions of finite

dimensional approximating identification problems to a solution of the

original infinite dimensional identification problem is demonstrated using

) the theory of nonlinear evolution systems and a nonlinear analog of the

i Trotter-Kato approximation result for semigroups of bounded linear

operators. The nonlinear theory developed here is shown to subsume an

existing linear theory as a special case. It is also shown to be applicable
to a broad class of nonlinear elliptic operators and the corresponding

nonlinear parabolic partial differential equations to which they lead. An

application of the theory to a quasilinear model for heat conduction or

-

mass transfer is discussed.
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ABSTRACT

An abstract approximation framework for the identification of
nonlinear distributed paramecter systems is developed. Inverse problems for
nonlinear systems governed by strongly maximal monotone operators
(satisfying a mild continuous dependence condition with respect to the
unknown parameters to be identified) are treated. Convergence of
Galerkin approximations and the corresponding solutions of finite
dimensional approximating identification problems to a solution of the
original infinite dimensional identification problem is demonstrated using
the theory of nonlinear evolution systems and a nonlinear analog of the
Trotter-Kato approximation result for semigroups of bounded Ilinear
operators. The nonlinear theory developed here is shown to subsume an
existing linear theory as a special case. It is also shown to be applicable
to a broad class of nonlinecar eclliptic operators and the corresponding
nonlinear parabolic partial differential equations to which they lead. An
application of the theory to a quasilinear modei for heat conduction or

mass transfer is discussed.
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1. Introduction

In this paper we develop a general abstract approximation framework
for the identification of nonlinecar distributed parameter evolution systems.
Our intent is to define relatively straightforward and easily verified
criteria that are applicable to broad classes of nonlinear systems; these
criteria will guarantee the convergence of solutions to a sequence of finite
dimensional Galerkin approximation based parameter estimation problems to
a solution of the original, underlying, infinite dimensional identification

‘
problem. The results that we present below generalize and extend the
theory recently developed by Banks and Ito in [2] and [3] for regularly
dissipative or abstract parabolic, linear systems. It is, to the best of our
knowledge, the first such general approximation theory for inverse
problems involving nonlinear distributed systems.

The sufficient conditions set down in our framework include a
relatively mild continuity assumption with respect to the unknown
parameters to be identified, an equi-boundedness and an equi-strong
monotonicity assumption on the nonlinear operator describing the system
dynamics. In addition our theory requires a standard approximation
assumption on the Galerkin subspaces used to effect the finite dimensional,
or finite element, approximations. We demonstrate that solutions to the
finite dimensional identification problems approximate a solution to the
infinite dimensional identification problem via a convergence result for
solutions to the forward problems. This result is obtained using the theory

of nonlinear evolution systems and a nonlincar analog of the well-known

Trotter- Kato approximation result for linear semigroups.
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In the present paper, we are concerned only with theory;
implementation questions and conclusions drawn from our numerical or
computational studies will be reported on elsewhere. Also, while we have
tried to make our framework as versitile as possible, the treatment below
does have limitations. For example, our theory can handle quasi-autonomous
systems but it is not applicable in the fully nonautonomous case. The
development of a general theory which can handle nonlinear systems
involving time dependent operators requires additional effort and is
currently the focus of our ongoing invcstigatiops. The particular
difficultics inherent in the time dependent case will be described in
greater detail in our discussions below.

We provide a brief outline of the remainder of the paper. In Section
2 we state a fundamental existence and uniqueness result for infinite
dimensional nonlinear systems and prove a general approximation result
which is especially well suited for application in the context of the inverse
problems which are the central focus of our study. In Section 3 we
define a class of nonlinear distributed systems and the associated
parameter identification problems. We define the Galerkin approximations
and prove the general convergence result. Section 4 contains some examples.
We show that our nonlinear theory subsumes the linecar theory presented in
[2] and [3]) as a special case; we also consider the application of our
framework to a class of nonlincar clliptic operators and the corresponding
nonlinear parabolic partial differential equations to which they lead. In
particular, we look at the application of our results to a well known
quasilinecar model for heat conduction or mass transfer. In Section § we

summarize our findings and provide some concluding remarks.
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2. An Approximation Result for Nonlinear Evolution Systems

Let X, be a Banach space with norm |-}, We consider the nonlinear,

quasiautonomous initial value problem in X, given by

(21)  xg0) + Agx(t) 3f ), 0<t €T,

(22)  x40) = x]

X
where xJ € X, fy (0,T] = X, and the nonlinear operator Ay X, = 2 0 is in

general multivalued, not everywhere defined, and not continuous. The
existence of solutions to the initial value problem (2.1), (2.2) and the
subsequent approximation result to follow, are both consequences of Theorem
2.1 to be given below.

We shall require the following definitions. Let X be a Banach space with
norm Hx- For A: X = 2x, a nonlinear, multivalued operator, the domain and
range of A are defined by Dom(A) = {x € X: Ax # 9} and R(A) = detJm(A)

respectively. We say that the operator A is accretive if for every ) > 0,

XX, € Dom(A) and y, € Ax,, y, € Ax, we have

I, = X,lx € 1x; = x5 + My, = ¥,))ix

We say that A is m-accretive if A is accretive and R(I + )\A) = X for some
% > 0. We note that if A is m-accretive then R(I + 2A) = X for every A > 0
and for each ) > 0 the resolvent of A at ), J();A): X - X, a single valued,
everywhere defined, nonlinear operator on X can be defined as J(\;A) =

(I + YA)L
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A two parameter family of nonlinear operators (U(ts): 0 € s € t € T) Nk
defined on a subset @ C X is called a nonlinear evolution system on Q if for
each x € Q2 we have U(ts)x € f} U(s;s)x = x and U(t,r)U(rs)x = U(t,s)x for -
0¢€s €r ¢t €T and U(ts)x is continuous from the triangle A = {[s,t} k:4
0 ¢s €t € T) into X. i
A strongly continuous function x: [0,t] ~ X is called a strong solution to s

the quasiautonomous initial value problem -

(23) k() +Ax()DFf(), 0<t T iy
(24)  x(0) = x° - N

where f: [0,T] = X and x° € X if x is absolutely continuous on compact th

J
subintervals of (0,T), differentiable almost everywhere and satisfies f(t) — el

%(t) € Ax(t) for almost every t € [0,T] and x(0) = x°. D

Theorem 2.3. Let X be a Banach space with norm |-lx and suppose that A: X - hot
2X and f: [0,T] = X appearing in (2.3) satisfy R
(1) there exists an w € R for which the operator A + wl is m-accretive, W
(2) £ €L0,T;X). e
Then a unigue, nonlinear evolution system (U(t,s): 0 € s €t € T} on m::an T

be constructed which satis fies O

() 1UL)¢ — Uts)dy € 4o — §,, for 6,4 € Dom(A) and R
0€s €t €T, - D

t
(i) (U(s+1,8)6 = Ulr+t,r)dly € 2] HETE(T4s) = F(T+1)],dT, '
— 0 R
Jor all § € Dom(A) and all t > 0 such that s+t, r+t<T. l::

. . . ’ . X . W WA - :
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(iii) if x° € Dom( A) and the initial value problem (2.3), (2.4) has a strong

solution x, then

x(t) = U(t,s)x(s), for 0 €s €t € T.

When x° € Dom( A), the strongly continuous function x: {0,T] = X given by x(t)

U(t,O)xo is referred to as a mild or generalized solution to (2.3), (2.4).

Theorem 2.1 is a direct consequence of results given by Crandall and
Evans and Evans in (7] and [9]. Henceforth, we shall assume that Ag X, - 2Xo
and fg [0,T) = X, satisfy (1) and (2) in the statement of Theorem 2.1 and

that x, € Dom(A,). We then let {Uyts): 0 € s € t € T) denote the

corresponding nonlinear evolution system on Dom(A,) and consider the

approximation of mild solutions to the initial value problem (2.1), (2.2).

Our approximation result is in the spirit of those given for nonlinear
semigroups and cvolution systems by Crandall and Pazy in [8] and Goldstein
in [10). However, our theorem differs from these earlier treatments in two
ways. First, we require that the time dependent perturbation f; be only L, as
opposed to it being continuous as in [8] and it satisfying a Lipschitz-like
condition in [10). This distinction is especially relevant in the case of control
systems where discontinuous input is common. The second difference is that
we give our result in a form that is most appropriate for application to the
development of a general approximation theory or framework and
computational schemes for the parameter identification problems to be
discussed in the next section.

We shall require some set theorctic notation. For sets H, n=0,1,2,.., by

lim HnDHo we shall mean: Given xoeHO, there exist x, € Hn such that X, = Xqas

N-®
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Theorem 2.2. Foreachn € Z%1 = (1,2,3, ...} let X, be a closed linear subspace of Xy
b ¢
Forn=0,1,.,let A : X =2 " be a possibly multivalued nonlinear operatoron X . and

let £ :[0,T = X bean X -valued measurable function defined on [0,T). Suppose

that there existsan w, € R, independentof n, for which the operators A, + wl
are m-accretive, that there existsa function g€L  (0,T;X,)) for which If (t)l €g(t),
a.c.t€ [0,T}, and that lim D, D D, where D_ = Dom(A_) and D, = Dom(A ).

Suppose further that for some X0>0we have
2.5) lim J(\; A+ w Do =J(2; A, + wo) ¢,
n-‘.

whenever ¢ € X with lim ¢ = ¢, € Xo»
n-OQ
and that

lim £ (t) = fo(t) for ae.t€[0,T]
n—bﬂ

Then for each n € Z% there exists a unique nonlinear evolution system (U o(t.s):
0 ¢<s€t<T)on l-)n corresponding (in the sense of Theorem 2.1) to A and f

cad for ¢n € _Dn with lim ¢ = ¢, € f)o we have
n-.@
(2.6) lim U (ts)¢ = U (ts)d, O €s <t €T,
n-m
with the limit being uniform in t for t € [s5,T].

Proof. We follow Goldstein (see [10], [11]) and use an approach first suggested
by Kisynski {13] for demonstrating the convergence of approximations to

linear semigroups, to prove the theorem via an application of our existence

result, Theorem 2.1.
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Let x = {x = {x}),_¢ X, € X, n =012, .., and !,'..T» x, = X5} and for
B - X € x set 11 = suplx |, Then §-1 defines a norm on the linear vector space
s n
%, and the space X together with the norm 1.1 is a Banach space. Define the
operator A4: X ~ 2X by

dom(4) = (x = {x_)>_, € X: x, € Dom(A ), and for each n = 1,2, ..

there exists a y € A x_such that li_‘xg Yo = Yo € AgXoh
n

for x € Dom(A4), ¥ = (v )ooo € AX if and only if Y €A X,

+ n=012. and limy_ =y,
5, n=®
‘: - Define an essentially X-valued function f on the interval [0,T] by f(t) =

(fn(t)}:=0' The assumptions on the f, are such that fn(t) = fo(t) for almost
every t € [0,T]. However, by appropriately redefining on a set of measure
zero, we may infer from the assumptions on the functions f_that f:[0,T] ~ X
. with { € L,(0,T;X).

It is readily seen that the operator 4 + w1 is m-accretive. Let x! =
(x)o_ X2 = (x})7_, € Dom(4) and let y' = (y})7_ € 4x! and y? = (y})*_ €
AX2. Since for each n = 0,1,2, ..., A+ wl is assumed to be m-accretive, for

ye A > 0 we have
21 %2 1.2 1 _ .2 1 1 _(y2 2
Ix? = x*) = s:p X, = xglo € S'I.‘lplxn Xp + Myp + woxo = (yo + wxp)iy
A A A A A A
= Ix? = x? + 23! + wx! = (¥ + wx)I,

and therefore that 4 + Wyl is accretive. Now let ;' = (yn}:=o € X and set X =
W (X )o=oWith x_ = JO0; A_ + wyl)y,, n = 0,1,2, .. where ), is chosen as in (2.5). It

K is immediately clear that for each n = 0,1,2, .., x, € Dom(A ) C X . Since

LA IR T A ; ! O o A ) A A ~ A W) Do AN AT ey OO e N o SLRL Y By SN A
E i Yah A \-""-'s-”\"l,!“vﬁi‘u"k‘eyﬁ.glﬁ‘.'lJ ) ‘\‘i‘q.. SR t'i.ntt.a(l cc J,t".i‘llﬁ s X ..0 A Mo Xy N A ' N Ny X .0
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§ € X we have lI'I_.ll‘l Y. ™ Yo and therefore, by assumption (2.5), that 11_.12 X, = Xg
or X € X Setting z_ = (y, = (I + \Wwpx)/3p 0 = 0,1,2, .., it follows that
z, € A x_ and l.ia z, = z, € Ax, We conclude that x € Dom(4), (I +
xo(A«mol)); 2 9. and that X(I + Ao(4 + uol)) =Y

We have shown that the operator 4 and the function f satisfy conditions
(1) and (2) given in the statement of Theorem 2.1. Therefore, a unique
nonlinear evolution system {U(ts): 0 € s €t € T) on l—)m corresponding to
A and f can be constructed with U(t,s) = (U (t,s)),_, Using assumption (2.5)
it can be shown that Dom(4) = (x = (x_)._, € X x_, € D, n = 0,1,2, ... and

li_.nl X, = Xo). Since R(U(t,s)) C X, it follows that
2.7 li_.xg U ts)e, = Uyts)d, 0€s €t T
n

whenever ¢ € D and Ln_.n‘l. Ou = 00 € D, Since each of the operators A and
the functions f_ satisfy conditions (1) and (2) of Theorem 2.1, unique
nonlinear evolution systems (U (ts): 0 € s €t € T) on I_)n corresponding to A
———— o o
and l‘n can be constructed. Recalling that Dom(A4) C x_o D, we may
n=

define the family of operators {(V(ts): 0 €s €t € T) on Dom( 4) by
(2.8) V(t,s)ﬁ = (Vn(t,s)xn);;o = (U,,(t.s)x,,);o

for x = ("n):=o € m. Uniqueness (see [9]) dictates that for each n =
0,1,2, ... U (t8)x, = V (t,8)x, whenever (x ) _o € Dom(A4). This together
with (2.7) and (2.8) establish (2.6). The fact that the convergence in (2.6)
is uniform in t for t € ([s,T}] is argued exactly as it was for the

convergence of approximations to nonlinear semigroups in the proof of

Theorem 3.2 in [10).
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- We note that (2.5) is also a necessary condition for the conclusion to

hold (see, for example, Theorem [ in [14]).

-
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3. An Approximation Theory for Identification Problems -

Let H be a real Hilbert space with inner product <-,-> and
corresponding norm |-|. Let V be a reflexive real Banach space with
norm I-§ and let V* be its dual. (All of our theory can be developed in
complex spaces if necessary; see [6].) We denote the usual dual norm on V*
by 1.1, and assume that V is densely and continuously embedded in H
with |v| € uglvl, v € V, for some positive constant g Identifying H with
its dual, we obtain V C H = H* C V* For ¢ € V* and v € V the duality
pairing between ¢ and v is denoted by <¢,v>. When ¢ € H, its pairing
with v € V agrees with the inner product of ¢ with v. It follows for u €
» H and v € V that lul, € gu| and Ivl, € g?lvl Let Q and Z be metric

4 spaces and let Q be a nonempty, sequentially compact, subset of Q. The

v spaces @ and Z, and the set Q are referred to as the parameter space, the
“o

¥ . . . .

‘c:‘ observation space, and the admissible parameter set respectively.

[t

8

7:1 We recall that a single valued operator A:V-V* is hemicontinuous if

Hg\ A(u+tv) = Au for all u,v€V where the limit is taken in the weak sense.

For each q € Q let A(q): V = V* be a single valued, hemicontinuous, (in N

general, nonlinear) operator satisfying:

. (A) (Continuity): For each v € V, the map q = A(q)v is continuous from - f
v Q C Q into V*,
(B) (Equi V- monotonicity): There exist an w € R and an « > 0, both

N independent of q € Q, such that

<A(qQ)u — A(Q)V, u=v> + wWu—v|® 3 alu—vi?,

for every uv €YV,

%
)
§

!
'
3
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- (C) (Equi-boundedness): There exist a constant B > 0, independent of .h'
q € Q such that .
JA(q)vl., € B(Ivl + 1), .
for every veyvV. ?
‘?_;.
K
For each q € Q, let f(-;q) € L,(0,T;H) and u%q) € H and assume that f“
the mapping q = u%q) is continuous from Q C Q into H and that the _
-
. mapping q - f(t;q) is continuous from Q C Q into H for almost every t € :
[0,T]. Also, for every z € Z, let u =~ &u;z) be a continuous map from .
g
' C(0,T;H) into R¥. o
We consider parameter identification or inverse problems of the form: by
(ID) Given observations z € Z, determine parameters @ € Q which :*
minimize R
“‘.:]
#a) = Huy(a);z) @
Bt
where u(q) = uy(-;q) is a mild solution to the initial value problem ;:;t‘
N
3.1 u(t) + A(qu(t) = f(t;q), 0 <t €T, ;’.;:
&
e
(32) u(0) = u%() b
.
.\

corresponding to q € Q.

By a mild solution to (3.1), (3.2) we mean a solution in the sense of ut
Theorem 2.1. To be more precise, for each q € Q we define the operator ‘
A,q): Dom(Aq)) € H = H to be the restriction of the operator A(q) to the W
subset of V given by Dom(Ayq)) = (v € V: A(q)v € H), and prove the N,

following theorem. !
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Theorem 3.). For each q € Q the operator A,(Q): Dom(Ao(q)) CH-=-H s

densely defined and the operator A (Q) + wl is m-accretive. N
. 4
1)
v
Proof. We first show that for each q € Q the operator A(q) + wl: V = V* js 1:;
¥
coercive. If {v } CV with li_.rg lvnl = o then from assumptions (B) and (C) we ';;;
obtain i e
po 1

lim <(A(q) + wl)vn,vn>/lvnl
n-m

= ;I.l-gl' {(KA(Q)v, — A@)8,v,> + qvnlz)/lvnl + <A(q)8,v >/lv 1) ::‘

> lim {alv_12/1v_I = [KA(Q)8,v_X/Iv 1) - BB

I\-.“ i

3 lim (alv | — 1A(q)8l,} 3 lim alv | —B == 1

n-® n-e® Q:(

B

where 9 denotes the zero vector in V. It follows that for each ) > 0, the :::j
'.?l

operator I + MA(Q) + wI): V = V* is monotone, everywhere defined on V, W
hemicontinuous, and coercive. Consequently RI + )A(Q) + wl)) = V* (see ':‘?i

Barbu [6], Theorem I1.1.3) and therefore R(I + MA(q) + wI)) = H. Also, for

u,v € Dom(Ao(q)), we may use assumption (B) to conclude

\G ‘v‘t_r:

[l + —,]lu—v]’ ¢ Ju=v|? + ralu—vI? 3

u ;';‘.
o
4,

€ ju—vi? + 2 {(A(q) + wi)u = (A(q) + Wl)v, u—v> ®
DG
= (I + MA(q) + wI)lu — (I + MA(Q) + w))v,u—v> t}‘gﬁ
&
€ NI + MAa(q) + whu — (I + X(Ao(q) + Whv| ju—v| ,ﬁ‘:i‘
el

or

=
lu=v| € ju = v + M(AQ) + wlu = (A (q) + wi)v)| o:.:
4,
which proves that Ao(q) + wl is m-accretive on Dom(A,(q)) C H. 1%
To show Dom(A,(q)) =H, weletu€H and foreachn=1,2,.. weset .\",:,




u, = J(1/n;A(q)+wl)u € Dom(A,(q)). Then, arguing as we have above, we
find
fu ® + (1/n)aldu 1% € <u = (1/n)A(q)8,u,>

€ [ul fu, + (1/n)1A(q)80.Hu 1

where @ is again the zero vector in V. But then

(33) (/2 + (1/n)e/2)hu 1? € (1/2)iuf? + (1/n)(1/2)1A(q)08?
€ (1/2)ul® + (1/n)(6%/24),

from which it immediately follows that the u_  are uniformly bounded in H.
Indeed, from (3.3) we sec that (l/n)lunl’ and, hence lunl/rﬂ, is bounded so
that IunI/n-oO as N-*,

Also, assumption (C) yields
fu, —ul, = (1/n)MA4(q) + whu L. € (1/n){(B + wu?)lu 1 + B).

Since the last term in the estimate above tends to zero as n = = we find

u = uin V* as n = = This, together with the fact that V is dense in H

imply that u - u weakly in H as n = « from which Dom(A, (q)) =H

immediately follows.
In light of Theorem 3.1, we may apply Theorem 2.1 with X = H, A =
A q) and f = f(.;q). We conclude that there exist a unique nonlinear

evolution system (Uy(tsq): 0 € s €t ¢ T) on H satisfying (i), (ii) and (iii).

. 9 - - . 5 4
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The mild solution uy(-;q): [0,T]~H to the initial value problem (3.1), (3.2) is given : 7:::
by u(t;q) = U(t,0,q)u%q) for t €[0,T). _

=
Remark. Under additional hypotheses on f(-;q) and u®4q) other existence E:;
results can be applied to obtain somewhat different notions of a solution to :‘::

the initial value problem (3.1), (3.2). For example (see [6, p.140-144]) if
f(-;q) € W0, T;H) and u%q) € Dom(A(q)), then there exists a unique u(-,q): .
[0,T] = V satisfying u(-;q) € WH™(0,T;H), A(q)u(-:q) € Lo(0,T:H) and u(e;q) + &
A(Q)u(t;q) = f(t;q) a.e. t € [0,T] Or, if u%q) € H and f(-,q) € L,(0,T;V*) | ~
then there exists a unique u(-;q) which is V*-valued absolutely continuous wh
almost everywhere on [0,T], u(-;q) € C(0,T;H) N L,(0,T;V), u(-;q) € L,(0,T;V*) o
and u{t;q) + A(q)u(t;q) = f(t;q), a.e. t € [0,T]. If, in addition, the mapping t =
t7f '(t;q) is an element in L,(0,T;V*) for some ¥ 3 1, then the mapping t -

t7u(t;q) is in L,(0,T;V) N L4O0,T;H). In particular, when f(-;q) = 0, the iy

nonlinear semigroup (Sy(t;q): 0 € t € T) on H defined by Se(tia) = U(t;0;a), '
t € [0,T), with generator —Ao(q) behaves like a holomorphic linear semigroup e,
in that it smooths. That is, S(t;q)u%q) € Dom(A,q)), t € (0,T], and the ]
mapping t = t g; S(t;q)u®q) is an element in L (0,T:H) for every u%q) € H.
Also, some generalizations are possible. For example, in assumption (B), the ‘:‘n‘
term alu — vI? can be replaced by a term of the form o«(lu—v1)lu — vl where an
of -) is a continuous, strictly increasing function on
[0,#) satisfying o{0) = O and Ln_m ofx) = @ Or, the terms lu — vi? in (B) e,
and vl in (C) can be replaced by lu — vIP and IvIP!  respectively, for

any p » 2.

PR ‘A_‘."r’.’A"’v"l A
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The development of computational methods for the solution of the
infinite dimensional optimization problem (ID) requires the finite dimensional
approximation of the abstract initial value problem (3.1), (3.2). The general
framework that we are proposing is based upon a classical Galerkin approach.
For each n = 1.2, ... let H, denote a finite dimensional subspace of H which is
a subset of V. Let P : H ~ H_ denote the orthogonal projection of H onto H,
with respect to the <-,.-> inner product. We assume that the approximating

subspaces H , and the projections P satisfy

(D) For each v €V, limiP v —vl = 0.
n-‘O

e

Note that assumption (D) and V densely and continuously embedded in H

R
GG

imply that lim |P u —u| = 0 for each u € H.
n-..

T
X
ky

-

For each q € Q and n = 1,2, ... we define the single-valued operator A _(q)

H, ~H_ by A (qQ)u, = v foru €H_ where v _satisfies
<A(q)un,wn> =<v,w ) w €H.

That A (q) is a well defined operator from H_ into H follows from the Riesz
Representation Theorem applied to the Hilbert space H_ and the bounded
linear functional <A(q)u,-> on H_. Also, define f (-;q): {0,T] - H,  and
ug(q) € H by f (t.q) = P f(t;q), 0 €t €T, and ug(Q) = P_u%q), respectively.
Note that fn(-;q) € Ll(O,T;Hn) C Ll(O,T;H) and that |fn(t;q)| ¢|f(t;q) for q €Q
and almost every t€ {0,T].

We consider the sequence of approximating identification problems given

by:

. T ) e
BUAOAOHOHE i‘g‘t‘q‘ ‘;((.g‘l GO0, c‘..‘.."'*'." i} g‘)_.‘l‘hi‘.‘l‘.‘ v, hl.;.l."l, I IACOTNC N W i, .."‘ X \ % “, n, !'.‘ A\ \',J."lh.l'
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(ID,) Given observations z € Z, determine parameters q, € Q which _ X
minimize T

(@) = ¥u_(q);z) _

where un(q) = un(-;q) is a mild solution to the initial value problem ‘J

in H

(3.49) U, () + A (Qu(t)=f(tq), 0<t<T 1

(3.5) u (0) = ud(q)

L]
corresponding to q € Q. N

From the definition of the A (q) and the assumptions (B) and (C) on A(q), ’ :
using arguments analogous to those used to prove Theorem 3.1, it can be .:
shown that the operators A _(q) + wl are m-accretive on H_. It then follows E"Z
from Theorem 2.1 that for each n = 1,2, .. there exists a unique nonlinear : “
evolution system (U (t5;q): 0 € s €t € T} on H satisfying (i) - (iii) in the v,
statement of that theorem with X = H, f(t) = f (t;q), and x® = u(q). The o
mild solution to the initial value problem (3.4), (3.5) is given by u (t}q) = N
U,(t,0:0)u%a), t € [0,T]

If we assume for the moment that the approximating identification RS

L)
problems (ID_) have solutions q, € Q, then it is desirable that they in some ‘ :"'
sense approximate a solution q to the original identification problem (ID). _ o
This is in fact the case. For suppose that it can be shown that for any '

]
sequence {q,} € Q with lim q_ = q € Q we have i
n-oﬂ

(36)  limu(a,) = u,(qy) in C(0,T;H). B

Then (q_n) € Q and Q a compact subset of the metric space Q imply that there {1

3
)
; ¥ ‘ O] i n, . A
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exist a subsequence {(q,) C (q,) and a q € Q such that lim q, = q. For any
i i~

q € Q the continuity of ¢ implies
HQ) = Hu,(Q)2) = ¢ (}yg u,j(q",,j);Z)
- lim &(u, @, );2) = lim ¢, @,)
f inand b ) i i 7
€lim ¢, (q) = lim &u, (a);2)
i~*® 7 § Intd ]

=0 (,!ijg u,,j(q);z) = &(uy(q);2)
= ¥a).

Note that in the discussion above we did not assume that a solution to
problem (ID) exists. But rather we have shown that the existence of solutions
C-I,, to the approximating problems (ID_) and (3.6) imply the existence of a
solution q to problem (ID). When the solutic_)n to problem (ID) is unique, the
sequence (q,) itself converges to q.

The cxistence of a solution En to problem (ID)) for each n = 1,2, ... will
follow from the compactness of Q and the continuity of ¢ once the continuous
dependence result: L',.'ﬂ. u.(a,) = u(q) in C(O,T;H ) whenever (q,} C Q with
Li'_ql“ Q,, = Qg has been established. Although continuous dependence for the
finite dimensional systems (3.4), (3.5) could be demonstrated via a
modification to any one of a number of familiar continuous dependence

- results for ordinary differential equations (see, for example, Hale [12],
Theorem 1.3.4), it is also easily handled with the approximation theory
developed in the previous section. 'i‘his and the convergence in (3.6) are

addressed in the following theorem.

, S . ) ) . .y r ) . .
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3
0
. - 1
Theorem 3.2. If assumptions (A) - (D) hold, then .:
- - - v ‘..‘
(@) If {a,) € Q with Ll_.ll.‘l, q, = q, then Ll_.nl un(qu) = u4(q,) in C(0,T;H), and ::
4
(b) 1/ (a,} €Q with !,i,.'!'oqm = q, then Lilmoun(qm) = u_(q,) for each n € zt L
k|
6"4
Proof. Assumption (D) and the continuity of the map q = u%q) from Q into H :cf
imply lim uv%q ) = u%q,) in H. Hence, we will have verified (a) if we can a
po® DN 0 b
i
show that !,'.."l U (tsiq)w, = Ug(tsiqg)wy, 0 € s €t € T, uniformly in t for ;
i
t € [s,T] whenever w, € H_  with Ll_.ﬂ.! w, = w, € H We argue this using "‘
Theorem 2.2, Note that assumption (D) implies lim H_ D H and assumption :Z
n—e® W
(D) together with the assumed continuity of the map q - f(t;q) from QCQ ?g
N
into H for almost every t €[0,T] imply lim fn(t ;qn) = f(t;qo) in H for almost '1,
n=—® Y
. . . §
every t€ [0,T] with the f_(';q_ ) dominated by a function g€L,(0,T;H) i
L
(N3
which is independent of n. Thus, we need only to demonstrate k-]
"“‘t
that for some ), > 0 we have .‘f
*
. . . 3
3.7 i‘_.'ﬁj(xo"\n(qn) +whw, = JO5A(q) + ww, :2
in H whenever w, € H , n € Z* with lim w_= w,. W
peo N '.:‘
'
Let 3, > 0 and set v, = JO;A(q,) + wDw, and v; = JO;AL(q) + wh)w, :3
D
We first show that Iv_I is uniformly bounded in n. From assumption (B) we
DY)
obtain .t
l‘:‘
Ay \
MooV 12 € 2 ulv | + 2 <A(a)v, - Aq,),v, > >.Ei
W
= (I + 2 (A (q) +w))v v > - |vﬂ|2 »
n g
+ 2o<A(q,)0 — A(q,)8,v > — ) <A(q,)8,v > :'::"
= WV, > = IV 1P+ 2oCA(a)0 — A(a,)8,v,> — A,<A(ay)8,v, > '!::
.
€ Iw LIv b +),1A(q)0 — A(q,)80.Hv I + M lA(q)ehlv I .
o
1!
:
t
I
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Rt OO MO A 'atl‘o,l‘\.l WAl a it Y BT S L T Y ol g B U



S AR R

-19-
where 8 denotes the zero vector in V. This estimate together with assumption

(C) yields

Iv 1 € (0w [ + atTA(q,)8 — A(qy)8l. + o8,
Recalling assumption (A) and that llgg w_=w, in H, we find that the desired
uniform bound on Iv_I has been established.
Once again, from assumption (B), we find

My vl € v v l? + MCA@ IV, = AQ VY, ~ Vo)

= Mulv, v * + MSA@@)v, — A(QVey, — PV

+ x0<A(qn)vn - A(qo)vo,ano - v0>

+ x0<A(q0)v0 -~ A(qn)vo,vn - v°>

xow(ano ~ VeV~ Vo> + (I + A(A(q) + ul))vn

= (I + 3 (Aqqp) + WD))vgv, =P ved+ <vy=v v =P v>

+ )‘O(A(qn)vn - A(qO)vo,Puv0 - v°>

+ 2 <A(qgv, = A(Q)v,v, — v,

AWSP vy = v,V = VD + w, —wev, =P ved—|v, -P_v, |2
+ 2 <A(qy)v, ~ A(Qgv,P vy = Vo2

+ 2<A(qgvy — AlQ)vpv, — vy

£ xouanvo—vol.lvn—vol + Iwn-wol.lvn—'vol

+ Iw —w L IP vo—v U + )\ 1A(q )V, — A(qgvel.IP v, — vl

0
+ xolA(qO)vo - A(qn)vol.lvn - vol.

1 n
The estimate ab ¢ o a’+ Y b? for any n > 0 and assumption (C) allow us to

argue

lﬂgl |2 éﬁﬂ.' |2 3 1 l2 |
5 v vol® € ™ ano—v0 s+ 2\001 LA N HE wn—wol.anvo—v

ol

+
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3)
+ MA@V, — A(QgVoleIP vy — v I + 2—q°-lA(qo)vo - A(g,)v 12

3w put A+ Ju? 2 &
<{ L +(° )}Iano—voI2+{ i +u—]|wn—w0|2 . -

s
2a 2 g 2 2:
v i+ 1 ' 3y 2 4~
+ 2 (B(Iv I + vol) + 2) ano - vol + e IA(qO)vo = A(q)v,l% . :3(
Ol
4!
From this, the uniform bound on kv I, lim w_ = w, in H and assumptions ‘3
n—® 0
vy
(A) and (D) allow us to conclude lim Vo= Vo in V and that (3.7) holds. z
n—*® i
Al
An analogous, but somewhat simpler argument can be used to verify (b). - §::
{4
&
We use Theorem 2.2 to show that for n € Z* fixed, lim U (ts;q )w, = N
m-= ; .'1-
U, (t,5:0)Wy 0 € s €t € T, uniformly in t for t € (s,T] whenever w .w, € H .:.
with LI\-!P-' w_ = wy in H. Clearly L:gw f (q,) = £,(;qy in L,(0,T;H ) so that g’::
'x
we necd only to show that for some ) > 0, ::
o
lim JOGA Q) + uDw,, = JOGA (a) + wDw, o
"
. . . o«
in H whenever 251. Wi = Woin Ho Let v = JOg A (q) + w)w_and v, = '.,:
JO0pA (a)) + W)W, Then from assumption (B) ',“
Ad
xoo'.xlvm-volz £ )‘o“""m_volz + X0<A(qm)vm =A@ ) VeV~ Ve h
= I+ 2(Aa,) + WD)V, — (I + ) (A (q) + wD)vgv, = vy> N
]
= Ivavg? + 2 <AV, - AQ VgV = Voo =
. .‘Q
= {w_-w,, (i PO |vm—vo]2 + 2<A(Qplvy — A(Q VeV, ~ Voo _ 5
N
€ hw —wol lv, ~v I + A MA(qv, — A(q)voledv, = v ! .‘
o :
r N
2
h‘

u 1
Iv,, —v,l ¢ x—;{- Iw,, —wg + - 1A(qy)vy — Alq,)v,le.

oy oy €

] MAAL iy Y WY Oy 37 \ P, h s % 'y
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r Assumption (A) and lim w_ = w, in H yield the desired result and the
. m—OQ

theorem is proved.

Remark. Inpractice, the approximating identification problems (ID,_)are solved

;; using standard iterative search techniques (for example, steepest descent, Newton’s
::: method, etc.) requiring the evaluation of ¢n(q) for g€ Q at each step. This in turn
" requires the integration of the finite dimensional initial value problem (3.4), (3.5).
‘é‘: ) Oncea basisfor H_hasbeen chosen, the solution to(3.4),(3.5) can be computed using
‘E% ) any standard numerical integrator for ordinary differential systems.  Also, the
?, parameter space Q and the admissible parameter set Q are frequently functional in
E nature and infinite dimensional. When this is the case the set Q must also be
E:t': discretized. Suppose that foreachm=1,2,.., 1™ QCQ -+ Qis a continuous map with
b finite dimensional range and that 2&1“‘((;) = q with the convergence uniform
A

.' in q for q € Q. Set Q™ = I"(Q) (note that Q™ is a compact subset of Q) and
E:: consider the identification problems (ID]) defined to be the problems (ID,)
N with Q replaced by Q™ It is clear that each of these problems admit a
»

:ﬁ: solution cT:' and it is not difficult to argue that there exists a subsequence
P —m, —m. -

‘_:: {q, i) C {(q) with j.li_tn. qn:- Q. q a solution to problem (ID) (see, for example,
- [4]). Once bases for H  and the range of I™ have been chosen, problem (IDT)
'.‘:;ai involves the minimization of a functional over a compact subset of Euclidean
BN

;’::{ ) space subject to finite dimensional constraints.

&

::I Remark (Nonautonomous systems). Theorems 2.1 and 2.2 remain valid for
3:: certain classes of temporally inhomogeneous or time dependent operators A =
;:: A(t). To be more precise, the family of operators A(t): X = 2X must be
50 m-accretive on X for almost every t € [0,T] and must satisfy

W, ” - . - NN TN T e T - oS BT 3 AN -
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-"
(3.8) PFOSA()x = J(A(s)xly € Mh(t) = h(s)ixL(Ix]y) . ¥
i,
_ ;‘:
for each x € X, every ) satisfying 0 < )\ ¢ Ao for some ), > 0, some h € :‘,
O
L,(0,T;X), some continuous, non decreasing function L:[0,%) - [0,*) and :‘
b1
almost every t,s € [0,T) (see [8], [9]). (Note that for simplicity we have taken "{;Q
o,
w = 0; however, the discussion to follow remains valid for any w € R.) The ::,
e
.k
primary motivation for developing the framework outlined above was to ‘-
&>
define readily verifiable conditions on the operators A(q): V = V* that if :;."
T X
satisfied would (i) also automatically be satisfied by the Galerkin »iij
EN ]
'Y
approximation A _(q) and (ii) lead to the desired convergence of solutions to - ;-‘f:
the approximating identification problems to a solution to problem (ID). The ;‘::
o":
natural assumption to add to (A) - (C) that certainly satisfies criterion (i) and f»::
N
that could conceivably lead to an estimate of the form (3.8) in H is that !g
o
i
w ]
(39)  1A(ta)v — Asia)vl. € In(t) = h(s) L) o
%
e
I
for each v € V, almost every s,t € [0,T) and some h € L,(0,T;H) and some :'i:
continuous nondecreasing L (0,=) - [0,®), both of which do not depend upon ;:;:
'.‘:
q € Q. Unfortunately, however, we can only show that (3.9) leads to an :".:
W3
]
estimate of the form ‘c'
[ ]
I
G
(3.10) N A(ta))u = J(MA (s;q))ul € vX Jh(t) = h(s)] L(ju)) ::::
)
!
for each u € H. Morcover, it is not clear to us how, or if, the proof of the A
fundamental Theorem 2.1 given in {9] could be modified so that (3.10) would t,
“
suffice. We have explored alternative approaches and developed other : X
+{A
techniques for treating the nonautonomous case (for example, in the linear ':‘

Wy Ty P X < n® P CPT LY PO LT C T T ey v
“h").‘?hqh\h'.ﬁ P )('?‘0 A80585.0 1 -.I A > .. \ Aot AN L 2 N
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. case, based upon some ideas in Tanabe [18], and in the strongly monotone case,
via a variational formulation which can be found in Barbu [6]). These

[}
e results will appear soon in forthcoming papers.
..
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4. Applications and Examples I
3
We briefly describe some classes of systems to which the general 3
framework developed in the previous section applies. In our discussion below
we consider theoretical aspects only. Implementation questions will be treated .
e,

and the results of our numerical studies will be reported on elsewhere. e
,'
Example 4.1. Lincar regularly dissipative operators. The approximation =
theory for inverse problems for systems involving linear regularly dissipative R
operators was treated in detail by Banks and Ito in, and is the central focus ‘
of, [2] and [3). We show here that the linear theory is a special case of the “,,-}
nonlinear theory given in Section 3. t“,
Let the spaces H, V, V* and Q and the set Q be as they have been defined ‘;
o
above. For each q € Q let a(q)(-,-) be a sesquilinear form defined on V x V s;_s
o
which satisfies the conditions: ",
o
(A') For each v € V the mapping q - a(q)(-,v) is continuous from Q C Q r:';
Oh

into V*, That is given € > 0 there exists a & > 0 such that B
&
sup  [a(@g)(u,v) —a@)(u,v)l < e ;x
hul=1 e

!.
whenever d(q,,q) < & where d denotes the metric on Q. o
.
(B') There exist an w € R and an « > 0, both independent of q € Q, for 3
-
which a(q)(v,v) + Wvi® » alvl? for every v € V. :;
ke
(C') There exists a constant B > 0, independent of q € Q, such that W
0’-:
i
(RS
la(q)(u,v)| € Blul Ivl for every u,v € V. Wy
lig

)
K3
L]
o
%

A
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When conditions (A') - (C') are satisfied it is not difficult to argue that for

cach q € Q an operator A(q) € XV,V*) can be defined by
[A(q)v)(u) = <A(q)v,u> = a(q}(u,v),

u,v € V and that A(q): V - V* satisfies (A) - (C). It then follows from
Theorems 2.1 and 3.1 that there exists a unique nonlinear evolution system

{Uy(tsia): 0 € s €t € T) on H corresponding to the initial value problem

u(t) + Ay(qQu(t) = f(t,q), 0 <t €T

u(0) = u%q)

where for cach q € Q, f(-;q) € L,(0,T;H), u%q) € H and A (q): Dom(A(q)) C
H - H is the restriction of A(qQ) to the set Dom(Ao(q)) = {v € V: A(q)v € H).
The operator —A(q) is the infinitesimal generator of an analytic semigroup
(To(t:q): t 3 0} on H (see [18]) and for ¢ €H
(4.1) Ug(t,s;0)0 = Ty(t-s;q)¢ + r Ty(t—T,0)((T,q)dT.

.
It can be shown that the semigroup (To(t;q): t 3 0) admits an extension (T(t;q):
t 3 0) which is an analytic semigroup on V* with generator A(Q): V C V* =~ V*,
Also the restriction of {T(t;q): t 3 0) to V, call it (?(t;q): t 3 0), is an analytic
semigroup on V with generator X(q): Dom(X(q)) CV =YV, the restriction of
A(q) to the set Dom(X(q)) = (v € V: A(qQ)v € V} (see [3], [18]). Consequently,
with appropriate assumptions on f(-;q), the evolution system {Ug(tsiq): 0 €5
€t € T) admits an extension {U(t,s;q): 0 €s €t € T} which is an evolution

system on V* and a restriction (fJ(t.s;q): 0 ¢s €t € T) which is an evolution

system on V.
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It is clear from (4.1) that when A(q) is linecar, we may take f(-;q) = 0 and
consider only the approximation of the semigroup (T(t;q): t 3 0} For cach
n = 1,2, .. let the finite dimensional subspaces H of H and the corresponding
orthogonal projections P, be as they were defined in Section 3 and assume
that condition (D) is satisfied. Denote the Galerkin approximations to A(q)
(i.c. the restriction of A(q) to an operator from H_ into H} = H)) by A _(q) and

set Tn(t;q) = exp(—tAn(q)), t 0. Theorem 3.2 then implies that
(42)  lim [T (ta)Pu%a,) — To(tagu’(aph = 0

uniformly in t, for t € [0,T) whenever {q,) C Q with Ll_r.na q, = G, € Q, and

the mapping q = u%4q) is continuous from Q C Q into H. In addition, recalling
that we required that H C V for all n = 1,2, .., an inspection of the proof of
Theorem 3.2 reveals that in the linear case with the existence of the semigroup

(T(t;q): t 3 0) on V, we may apply Theorem 2.2 with X = V and conclude that
(43)  LmIT(tq)Pu%a,) = T(tagu%apl = 0

uniformly in t for t € [0,T] whenever lim q, = q, u%q) € V and the map
n

q -~ v%q) is continuous from Q into V (see also [3])). Then for ¢ € H, setting

t
U, (5P, = T,(5i0P,0 + [ T (-Ta)P,f(ria)dr

under appropriate assumptions on f(-;q), (4.2) and (4.3) continue to hold with
T (), Ty(t:a), and T(t;q) replaced by U (tsiq), U tsa), and U(tsa),

respectively, with the convergence being uniform in t, for t € [5,T}). Hence the
lincar theory and results of [3]) are a special case of the nonlinear theory of

Section 3.

.
t,
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. We note that in the context of the identification problem, the fact that

the stronger V-convergence given in (4.3) can be obtained is significant.

Indeed, (4.3) permits the relaxation of the continuity assumption on the

performance index & to the requirement that for each z € Z, the mapping u ~

®(u,z) be continuous from C([0,T)V) into R*. This can have the effect of

! significantly enlarging the class of allowable observations. For example, in

the case of a one dimensional parabolic system formulated in H = L, with V

in H!, spatially discrete (i.c. pointwise, as opposed to distributed in space)
measurements will suffice (see [3] and [5)).

Among the class of linear regularly dissipative operators which arise from

. a form satisfying (A') - (C') are the familiar elliptic partial differential

2124041

4 operators on L,. Bricfly, let 2 be a region in R? and let 0= x Lg(f). Let
2 =1

n
Q beacompact subset of @ with the property thatif q= {(aij, b, ¢): i,j-l,...,!] €Q,

i then for some « > 0 independent of q € Q.

o [

(L 3058, 2 «le?

for every x €0, and every { € RY. For q € Q and u,v € H}(D) set

1 du av
a(q)(u,v) = IQL 3:=1 a,(x) aXi(x) axjx)

du(x)
ax

1
+ L bx) v(x) + c(x)u(x)v(x) }dx

with H = L,(Q) and V any closed subspace of H(Q) containing H)(Q), it can be

shown (see [18]) that a(q)(-,-) satisfies (A') - (C'). The operator A(q) is given

formally by

X B g ‘ 2 { : C v . ’ A g
R ’l‘ WY, l‘. ‘g Yoo, “'s XN i » BN (DG LRI t‘l () .'., AT AN AL .. L) ("‘0' [ ¢ I“’g'. AN RN 4, “‘.- i
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4.4) Aq) ‘;: é—8()8—"';:1)()8— (x)
“. (@ = ij=1 8x, it 3, =1 i axi"“'

When 80 is sufficiently smooth, A(q) is the ¢elliptic operator given by (4.4), and
V is chosen to be either H},(Q) or H{(f), the equation (3.1) becomes a parabolic
partial differential equation with either Dirichlet or Neumann boundary
conditions.

For H = L) and V a subspace of HY(Q), choosing the approximating
subspaces to be the span of an appropriate collection of first order spline
functions will typically satisfy assumption (D) (see [15] and Example 4.2

below).

Example 4.2. Nonlinear Elliptic Operators. Let @ be a bounded region in R?
with smooth boundary I = 3Q. For a = (o, ., @) a multi-index, let |of = o, +
« + --- + ap and denote the oth order generalized, or distributional
derivative of a function u by D%u; that is,
(- 4
a1 3!
D%u(x) =

L
a1 axy!

u(x), x€e€n.

Let m be a ncnnegative integer and let 6u denote the vector valued function
of length N = (’}"") whose components are all of the partial derivatives of u
of order greater than or equal to zero and less than or equal to m.

For each multi-index « with |[of € m, let (x,{) - a,(x,{) be a real valued
function defined on @ x RN which is measurable in x and continuous in {. We
assume that

(1) there exist a g € L,() and a positive constant 7 such that
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. 4.5) fag(x,80 € YLl + 8(x)) ]
for almost every x €, each { € RN and all a with {of € m, and :
(2) there exists a positive constant )\ such that “
- - - n ‘
(4.6) I«I}:‘m (g (x,0) —a(x,MNE, — N 2 Mz‘m“a nd

for almost every x € 0 and all {,n € RN.
Let H = L(R) and let V be any closed subspace of H™(Q) which

contains HJ(Q). Define the operator A: V =~ V* by

e W

4.7) (Au)(v) = |a2|:Sm In a (x,8u(x))D%v(x)dx,

for u,v € V. The operator A given by (4.7) is the distributional form of the

formal differential operator

L e o e

(4.8) (Au)(x) = Mz‘m (—1)*D% (x,5u(x)). .

A differential operator of the form (4.8) is referred to as a nonlinear elliptic

operator and the partial differential equation

-

8u )2 .
(4.9) 3 (bX)+ Iml}:‘m( 1)*Da (x,8u(t,x)) = f(t,x)

e

is said to be of nonlinear parabolic type. When V = H{Y(Q), a solution in V*

¢

to the abstract equation !
\

4

u(t) + Au(t) = f(t) .

3

with A given by (4.7) corresponds to a variational solution to (4.9) which !

satisfies Dirichlet boundary conditions. When V =~ H™()), a variational

solution to the Neumann problem is obtained. Note that in the linear case we

R e A O O O e O O A O O D N NN T DR
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have . i
a(x,5u(x)) = . B;l:‘m a%B(x)DBu(x). . ";
Under the assumptions above, it is not difficult to show that A given by ;
(4.7) is hemicontinuous and satisfies conditions (B) and (C) given in Section 3. 'i
With an appropriate choice of the space Q and the set Q, condition (A) can be f"
satisfied as well. ;
A quasilinear model for heat conduction or mass transfer in which the
heat or mass flux is a function of the temperature or mass fraction gradient
discussed in [16] and [17] leads to a nonlinear elliptic operator and a nonlinear ' ';;
parabolic partial differential equation of the forms (4.8) and (4.9), respectively l
with m = 1. Let t be a bounded region in R? with smooth boundary and let :t
Q = L0 x RY). Let Q be a compact subset of @ with the property that S\;
q € Q if and only if the mapping { = q(x,{) is C! on R? for almost every Ef.
x € Q2 and there exists a X > 0 (which does not depend on q) such that ?
o
(410)  89,q(x,8)[g_g-(k = M + a(x,8)E; = 1) 3 M5, = ), .
c.':
for i = 1,2, .., 2, almost every x € Q and all 8,{,n € RL (When t = 1, the ‘E‘:
function q(x,t) = q(t) = (1 —.5¢-t") satisfies (4.10).) ' "::
Let H = L,(n) and let V be any closed subspace of HY()) which contains '::l
HXQ). Then V C H C V* and for cach q € Q define A(q): V = V* by ‘:1
i
@11 (@) = [ a@x ux)Ru(x) w(xdx &
Q .:'1
for u,v € V. Note that for each q € Q the operator given by (4.11) is of the ‘:

form (4.7) with -

. . DO
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- (4.12) a(x,6u(x)) = q(x,%u(x))D%u(x)

for x € Q and all « with [of = I and a, = 0 for [ = 0. The nonlinecar

parabolic partial differential equation (4.9) takes the form
du
a (t,x) — V.q(x,%u(t,x))Vu(t,x) = f(t,x), t>0, x €.
Taking §-1 to be the usual norm on H}(Q), it follows that
1A(qp)u — A(qy)ul. € g, — g lul

for each u € YV and Q,4, € Q. Since Q is a compact subset of L (f x R'), it is
casily verified that a given by (4.12) satisfies a growth condition of the form
(4.5) with 7 and g independent of q € Q. An application of the mean value
theorem together with assumption (4.10) imply the existence of a ) > 0,
independent of q €Q, for which (4.6) holds. Consequently the conditions (A), (B),
and (C) given in Section 3 are satisfied, and our general theory can be applied.
With regard to approximation, polynomial spline function based Galerkin '
subspaces can often be shown to satisfy condition (D). For example, when
£ =] and Q = (0,]1) in the nonlinear heat conduction/mass transfer example
discussed above, the subspaces H can be chosen as the span of the linear
B-spline ("hat") functions with respect to the uniform mesh {0, 1/n, 2/n, ..., 1)
appropriately modified to satisfy stable, or geometric, boundary conditions.
Familiar error estimates for interpolation and the Schmidt inequality can then

be used to verify that condition (D) is satisfied (see {5]). Generalization to

R e

higher dimensions is possible, and can often be achieved via tensor

products of one dimensional elements (see [15]).
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5. Concluding Remarks
A

We have developed a general abstract approximation framework for the ,::,

1

identification of nonlinear distributed parameter evolution systems. The class : ',t'
of systems to which our theory applies are those whose dynamics can be '
described by a nonlinear operator which satisfies conditions that are the {
natural nonlinear extensions, or analogs, of the properties of regularly :3‘
dissipative, or abstract parabolic, linear operators. The approach we have h
taken is based upon the defining of a sequence of approximating finite '3‘
dimensional identification problems in which the systems to be identified are f\:f
Galerkin approximations to the original, underlying, infinite dimensional lé‘
nonlinear dynamics. Under a weak continuity assumption with respect to the E?
unknsown parameters to be identified, equi-boundedness and equi- :‘:
monotonicity conditions, and an approximation assumption on the Galerkin .E‘
subspaces (all of which are readily verified for wide classes of nonlinear ‘;‘
distributed systems and finite element subspaces), we are able to demonstrate :f;'
that solutions to the approximating problems exist, and, in some sense, .
approximate (i.c. subsequential convergence) solutions to the original infinite "‘:'
dimensional identification problem. We have shown that the lincar theory Q
presented in [2] and [3] is a special case of our nonlinear framework and that '
our results are applicable to a reasonably wide class of nonlinear elliptic _A ::
\

operators and corresponding nonlinear parabolic partial differential equations.
In particular, we have considered application of our theoretical framework to .
)

a guasi-linear model for heat conduction or mass transport. E::‘::
N
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The general approximation result for nonlinear evolution systems
discussed in Section 2 is applicable to a much broader class of nonlinear

dynamical systems than we subsequently treated in Section 3. For example,

:-: this class of systems would include those with dynamics described by set
': valued maps or multifunctions, and (after minor modification to the
N gencral theory) time dependent or nonautonomous operators. We are
currently investigating these features of the general approximation theory
~ . in the context of parameter estimation problems. Also, we would like to
) be able to weaken the somewhat restrictive strong monotonicity condition.
N

‘:E Any progress that we might make in these efforts would have the potential
:E to significantly enlarge the class of nonlinear systems to which our theory
) and framework would apply. Finally, extensive numerical or
\

h:‘{ computational studies designed to demonstrate the feasibility and point out
:;z: the limitations of our schemes and general approach are currently
8

) underway and will be reported on in a forthcoming paper.
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